Subcellular Localization of Iron and Heme Metabolism Related Proteins at Early Stages of Erythrophagocytosis
نویسندگان
چکیده
BACKGROUND Senescent red blood cells (RBC) are recognized, phagocytosed and cleared by tissue macrophages. During this erythrophagocytosis (EP), RBC are engulfed and processed in special compartments called erythrophagosomes. We previously described that following EP, heme is rapidly degraded through the catabolic activity of heme oxygenase (HO). Extracted heme iron is then either exported or stored by macrophages. However, the cellular localization of the early steps of heme processing and iron extraction during EP remains to be clearly defined. METHODOLOGY/PRINCIPAL FINDINGS We took advantage of our previously described cellular model of EP, using bone marrow-derived macrophages (BMDM). The subcellular localization of both inducible and constitutive isoforms of HO (HO-1 and HO-2), of the divalent metal transporters (Nramp1, Nramp2/DMT1, Fpn), and of the recently identified heme transporter HRG-1, was followed by fluorescence and electron microscopy during the earliest steps of EP. We also looked at some ER [calnexin, glucose-6-phosphatase (G6Pase) activity] and lysosomes (Lamp1) markers during EP. In both quiescent and LPS-activated BMDM, Nramp1 and Lamp1 were shown to be strong markers of the erythrophagolysosomal membrane. HRG-1 was also recruited to the erythrophagosome. Furthermore, we observed calnexin labeling and G6Pase activity at the erythrophagosomal membrane, indicating the contribution of ER in this phagocytosis model. In contrast, Nramp2/DMT1, Fpn, HO-1 and HO-2 were not detected at the membrane of erythrophagosomes. CONCLUSIONS/SIGNIFICANCE Our study highlights the subcellular localization of various heme- and iron-related proteins during early steps of EP, thereby suggesting a model for heme catabolism occurring outside the phagosome, with heme likely being transported into the cytosol through HRG1. The precise function of Nramp1 at the phagosomal membrane in this model remains to be determined.
منابع مشابه
Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism
Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free ...
متن کاملSequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression.
Tissue macrophages play an essential role in iron recycling through the phagocytosis of senescent RBCs (red blood cells). Following haem catabolism by HO1 (haem oxygenase 1), they recycle iron back into the plasma through the iron exporter Fpn (ferroportin). We previously described a cellular model of EP (erythrophagocytosis), based on primary cultures of mouse BMDMs (bone-marrow-derived macrop...
متن کاملIron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages.
The expression of ferroportin1 (FPN1) in reticuloendothelial macrophages supports the hypothesis that this iron-export protein participates in iron recycling from senescent erythrocytes. To gain insight into FPN1's role in macrophage iron metabolism, we examined the effect of iron status and erythrophagocytosis on FPN1 expression in J774 macrophages. Northern analysis indicated that FPN1 mRNA l...
متن کاملHRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis.
Adult humans have about 25 trillion red blood cells (RBCs), and each second we recycle about 5 million RBCs by erythrophagocytosis (EP) in macrophages of the reticuloendothelial system. Despite the central role for EP in mammalian iron metabolism, the molecules and pathways responsible for heme trafficking during EP remain unknown. Here, we show that the mammalian homolog of HRG1, a transmembra...
متن کاملIron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin.
Ferroportin 1 (FPN1) is transmembrane protein involved in iron homeostasis. In the duodenum, FPN1 localizes to the basolateral surface of enterocytes where it appears to export iron out of the cell and into the portal circulation. FPN1 is also abundantly expressed in reticuloendothelial macrophages of the liver, spleen, and bone marrow, suggesting that this protein serves as an iron exporter in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012